RS 材料 新能源
捷径: 新闻动态 采访报道 制造工艺 封装技术 设备与材料 纳米技术 芯片设计 FPD MEMS 新能源
制造工艺
ALD制程可望成为64层以上3D NAND Flash解决方案
材料来源:Digitimes           录入时间:2016/12/25 16:44:12

垂直通道填充金属系3D NAND Flash朝64层以上垂直堆叠发展的关键课题之一,原子层沉积(Atomic Layer Deposition;ALD)制程可于高深宽比(High Aspect Ratio)垂直通道中,大面积形成均匀性薄膜,且具备良好的阶梯覆盖性(Step Coverage),故适用于更多层3D NAND Flash垂直通道填充金属,然其存在沉积速度较慢及所需材料成本较高等问题。

ALD系化学气相沉积(Chemical Vapor Deposition;CVD)的一种,与另一CVD技术电浆辅助化学气相沉积(Plasma-Enhanced CVD;PECVD)相较,ALD采用依序注入第一种与第二种前驱物(Precursor)作为反应气体的方式,来蒸镀薄膜,此不同于PECVD运用电浆的蒸镀技术,同时蒸镀两种以上前驱物进行化学反应。

观察ALD的优点,其可准确控制膜厚,以原子级精准度形成大面积的均匀薄膜,且适于在凹凸结构蒸镀阶梯覆盖性佳的薄膜,反观PECVD则不易在凹凸结构或深孔图样达成厚度一致的薄膜,故ALD制程可望成为64层以上3D NAND Flash垂直通道填充金属的解决方案。

不过,ALD因依序注入反应气体以蒸镀薄膜,其沉积速度较PECVD慢,相对需较长制程时间,且ALD所需前驱物数量较多,易使沉积成本增加。

3D NAND Flash朝64层以上发展,需于沉积与蚀刻面改良薄膜沉积、垂直贯穿通道、通道填充金属等制程,其中,薄膜沉积制程时间延长,垂直贯穿通道需改采成本较高的干式蚀刻技术,而通道填充金属所需ALD制程亦存在制程时间与成本增加等问题,使得如何因应成本上扬将成3D NAND Flash发展更多层技术的重要课题。


上一篇:等离子刻蚀中的硅片表面均匀性控制... 下一篇:Process Watch:蚕食你的良率

版权声明:
《半导体科技》网站的一切内容及解释权皆归《半导体科技》杂志社版权所有,未经书面同意不得转载,违者必究!
《半导体科技》杂志社。
 
 
 
友情链接
首页 | 关于我们 | 联络我们
Copyright© 2017:《半导体科技》; All Rights Reserved.
请用 Microsoft Internet Explorer 6.0 或以上版本
Please use Microsoft Internet Explorer 6.0 or higher version.
备案序号粤ICP备12025165号